ar X iv : 0 80 4 . 43 76 v 1 [ m at h . PR ] 2 8 A pr 2 00 8 fractional brownian flows ∗

نویسنده

  • Sreekar Vadlamani
چکیده

We consider stochastic flow on Rn driven by fractional Brownian motion with Hurst parameter H ∈ ( 1 2 , 1), and study tangent flow and the growth of the Hausdorff measure of sub-manifolds of Rn as they evolve under the flow. The main result is a bound on the rate of (global) growth in terms of the (local) Hölder norm of the flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 4 . 43 76 v 2 [ m at h . PR ] 5 A ug 2 00 8 fractional brownian flows ∗

We consider stochastic flow on Rn driven by fractional Brownian motion with Hurst parameter H ∈ ( 1 2 , 1), and study tangent flow and the growth of the Hausdorff measure of sub-manifolds of Rn as they evolve under the flow. The main result is a bound on the rate of (global) growth in terms of the (local) Hölder norm of the flow.

متن کامل

ar X iv : 0 80 3 . 36 65 v 2 [ m at h . PR ] 4 D ec 2 00 8 INTEGRATION WITH RESPECT TO FRACTIONAL LOCAL TIME WITH HURST INDEX

Let L (x, t) = 2H R t 0 δ(B s − x)s ds be the weighted local time of fractional Brownian motion B with Hurst index 1/2 < H < 1. In this paper, we use Young integration to study the integral of determinate functions R R f(x)L (dx, t). As an application, we investigate the weighted quadratic covariation [f(B), B ] ) defined by [f(B), B ] (W ) t := lim n→∞ 2H n−1

متن کامل

ar X iv : 0 70 8 . 37 30 v 1 [ m at h . PR ] 2 8 A ug 2 00 7 DENSITIES FOR ROUGH DIFFERENTIAL EQUATIONS UNDER HÖRMANDER ’ S CONDITION

We consider stochastic differential equations dY = V (Y ) dX driven by a multidimensional Gaussian process X in the rough path sense. Using Malliavin Calculus we show that Yt admits a density for t ∈ (0, T ] provided (i) the vector fields V = (V1, ..., Vd) satisfy Hörmander’s condition and (ii) the Gaussian driving signal X satisfies certain conditions. Examples of driving signals include fract...

متن کامل

ar X iv : 0 80 2 . 06 73 v 1 [ m at h . PR ] 5 F eb 2 00 8 FRACTIONAL CAUCHY PROBLEMS ON BOUNDED DOMAINS

Fractional Cauchy problems replace the usual first order time derivative by a fractional derivative. This paper develops classical solutions and stochas-tic analogues for fractional Cauchy problems in a bounded domain D ⊂ R d with Dirichlet boundary conditions. Stochastic solutions are constructed via an inverse stable subordinator whose scaling index corresponds to the order of the fractional ...

متن کامل

ar X iv : 0 80 4 . 31 43 v 1 [ m at h . A G ] 1 9 A pr 2 00 8 RUAN ’ S CONJECTURE ON SINGULAR SYMPLECTIC FLOPS

We prove that the orbifold quantum ring is preserved under singular symplectic flops. Hence we verify Ruan’s conjecture for this case.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009